Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Mol Oncol ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38558505

RESUMEN

Metabolic dysfunction-associated steatohepatitis-driven hepatocellular carcinoma (MASH-HCC) is a global clinical challenge for which there is a limited understanding of disease pathogenesis and a subsequent lack of therapeutic interventions. We previously identified that tumor necrosis factor-alpha (TNF-α) upregulated apoptosis antagonizing transcription factor (AATF) in MASH. Here, we investigated the effect of TNF-α converting enzyme (TACE) inhibition as a promising targeted therapy against AATF-mediated steatohepatitis to hepatocarcinogenesis. A preclinical murine model that recapitulates human MASH-HCC was used in the study. C57Bl/6 mice were fed with chow diet normal water (CD) or western diet sugar water (WD) along with a low dose of carbon tetrachloride (CCl4; 0.2 µL·g-1, weekly) for 24 weeks. TACE activity, TNF-α levels, and AATF expression were measured. The mice were treated with the TACE inhibitor Marimastat for 12 weeks, followed by analyses of liver injury, fibrosis, inflammation, and oncogenic signaling. In vitro experiments using stable clones of AATF control and AATF knockdown were also conducted. We found that AATF expression was upregulated in WD/CCl4 mice, which developed severe MASH at 12 weeks and advanced fibrosis with HCC at 24 weeks. WD/CCl4 mice showed increased TACE activity with reduced hepatic expression of sirtuin 1 (Sirt1) and tissue inhibitor of metalloproteinase 3 (Timp3). The involvement of the SIRT1/TIMP3/TACE axis was confirmed by the release of TNF-α, which upregulated AATF, a key molecular driver of MASH-HCC. Interestingly, TACE inhibition by Marimastat reduced liver injury, dyslipidemia, AATF expression, and oncogenic signaling, effectively preventing hepatocarcinogenesis. Furthermore, Marimastat inhibited the activation of JNK, ERK1/2, and AKT, which are key regulators of tumorigenesis in WD/CCl4 mice and in AATF control cells, but had no effect on AATF knockdown cells. This study shows that TACE inhibition prevents AATF-mediated inflammation, fibrosis, and oncogenesis in MASH-HCC, offering a potential target for therapeutic intervention.

2.
J Cell Physiol ; 239(1): 135-151, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37942831

RESUMEN

In tandem with the expanding obesity pandemic, the prevalence of metabolic dysfunction associated steatohepatitis (MASH, formerly known as NASH)- driven hepatocellular carcinoma (HCC) is predicted to rise globally, creating a significant need for therapeutic interventions. We previously identified the upregulation of apoptosis antagonizing transcription factor (AATF), which is implicated in facilitating the progression from MASH to HCC. The objective of this study was to examine whether the intervention of curcumin could alleviate AATF-mediated MASH, inhibit tumor growth, and elucidate the underlying mechanism. A preclinical murine model mimicking human MASH-HCC was employed, subjecting mice to either a chow diet normal water (CDNW) or western diet sugar water (WDSW) along with very low dose of carbon tetrachloride (CCl4 - 0.2 µL/g, weekly). Mice receiving curcumin (CUR) alongside WDSW/CCl4 exhibited significant improvements, including reduced liver enzymes, dyslipidemia, steatosis, inflammation, and hepatocellular ballooning. Curcumin treatment also suppressed hepatic expression of inflammatory, fibrogenic, and oncogenic markers. Of note, there was a significant reduction in the expression of AATF upon curcumin treatment in WDSW/CCl4 mice and human HCC cells. In contrast, curcumin upregulated Kruppel-like factor 4 (KLF4) in MASH liver and HCC cells, which is known to downregulate sp1 (specificity protein-1) expression. Thus, curcumin treatment effectively inhibited the progression of MASH to HCC by downregulating the expression of AATF via the KLF4-Sp1 signaling pathway. These preclinical findings establish a novel molecular connection between curcumin and AATF in reducing hepatocarcinogenesis, and provide a strong rationale for the development of curcumin as a viable treatment for MASH-HCC in humans.


Asunto(s)
Carcinoma Hepatocelular , Curcumina , Hígado Graso , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Ratones , Apoptosis , Proteínas Reguladoras de la Apoptosis , Carcinoma Hepatocelular/patología , Curcumina/farmacología , Curcumina/uso terapéutico , Hígado Graso/patología , Inflamación/tratamiento farmacológico , Inflamación/patología , Neoplasias Hepáticas/patología , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteínas Represoras , Factores de Transcripción
3.
Front Oncol ; 13: 1130380, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37361585

RESUMEN

Background and aims: Angiogenesis is a key factor in the growth and metastasis of hepatic tumors and thus a potential therapeutic target in hepatocellular carcinoma (HCC). In this study, we aim to identify the key role of apoptosis antagonizing transcription factor (AATF) in tumor angiogenesis and its underlying mechanisms in HCC. Methods: HCC tissues were analyzed for AATF expression by qRT-PCR and immunohistochemistry. Stable clones of control and AATF knockdown (KD) were established in human HCC cells. The effect of AATF inhibition on the angiogenic processes was determined by proliferation, invasion, migration, chick chorioallantoic membrane (CAM) assay, zymography, and immunoblotting techniques. Results: We identified high levels of AATF in human HCC tissues compared to adjacent normal liver tissues, and the expression was found to be correlated with the stages and tumor grades of HCC. Inhibiting AATF in QGY-7703 cells resulted in higher levels of pigment epithelium-derived factor (PEDF) than controls due to decreased matric metalloproteinase activity. Conditioned media from AATF KD cells inhibited the proliferation, migration, and invasion of human umbilical vein endothelial cells as well as the vascularization of the chick chorioallantoic membrane. Furthermore, the VEGF-mediated downstream signaling pathway responsible for endothelial cell survival and vascular permeability, cell proliferation, and migration favoring angiogenesis was suppressed by AATF inhibition. Notably, PEDF inhibition effectively reversed the anti-angiogenic effect of AATF KD. Conclusion: Our study reports the first evidence that the therapeutic strategy based on the inhibition of AATF to disrupt tumor angiogenesis may serve as a promising approach for HCC treatment.

4.
Front Nutr ; 10: 1158633, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153919

RESUMEN

Aims: To explore the hepatoprotective role of quercetin and its novel molecular mechanism of action on breast cancer associated hepatic inflammation and fibrosis via Vitamin D receptor (VDR). Main methods: We used Ehrlich Ascites Carcinoma (mouse mammary carcinoma) model for our in-vivo experiments and human breast cancer cell lines for in-vitro assays. We inoculated 1.5 × 106 Ehrlich ascites carcinoma cells into female Swiss albino mice. Quercetin (50 mg/kg) was administered intraperitoneally for 15 days. Liver enzymes activity was determined using a spectrophotometric assay. The hallmarks of inflammation and fibrosis were determined using Immunohistochemistry. The effect of quercetin on tumor formation was elucidated using human breast cancer cell lines and chick chorioallantoic membrane assay. Docking study was performed to explore the binding mode of quercetin with VDR. Key findings: In EAC tumor-bearing mice, cell numbers, tumor volume, body weight and liver weight were dramatically increased, while they significantly decreased in mice treated with quercetin. Additionally, the peritoneal neo-angiogenesis was also significantly suppressed in the quercetin-treated mice, compared to the control. In addition, quercetin treated EAC tumor bearing mice had lower levels of liver enzymes, decreased hepatic inflammation and fibrosis compared with EAC tumor bearing mice. Docking study confirmed VDR-quercetin interaction. Furthermore, in-vitro assays and chick chorioallantoic membrane assay revealed the Vitamin D mimicking effect of quercetin. Significance: Dietary flavonoid, quercetin could act as a promising therapeutic drug to suppress the breast cancer induced tumor angiogenesis, hepatic inflammation, and fibrosis possibly via activation of VDR.

5.
Front Pharmacol ; 14: 1135952, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36909161

RESUMEN

Introduction: Non-alcoholic fatty liver disease (NAFLD) incidence has been rapidly increasing, and it has emerged as one of the major diseases of the modern world. NAFLD constitutes a simple fatty liver to chronic non-alcoholic steatohepatitis (NASH), which often leads to liver fibrosis or cirrhosis, a serious health condition with limited treatment options. Many a time, NAFLD progresses to fatal hepatocellular carcinoma (HCC). Nuclear receptors (NRs), such as liver X receptor-α (LXR-α) and closely associated farnesoid X receptor (FXR), are ligand-inducible transcription factors that regulate various metabolism-associated gene expressions and repression and play a major role in controlling the pathophysiology of the human liver. Withaferin A is a multifaceted and potent natural dietary compound with huge beneficial properties and plays a vital role as an anti-inflammatory molecule. Methods: In vivo: Swill albino mice were fed with western diet and sugar water (WDSW) for 12, 16, and 20 weeks with suitable controls. Post necropsy, liver enzymes (AST, ALT, and ALP) and lipid profile were measured by commercially available kits using a semi-auto analyzer in serum samples. Liver histology was assessed using H&E and MTS stains to check the inflammation and fibrosis, respectively, using paraffin-embedded sections and mRNA expressions of these markers were measured using qRT-PCR method. TGF-ß1 levels in serum samples were quantified by ELISA. In vitro: Steatosis was induced in HepG2 and Huh7 cells using free fatty acids [Sodium Palmitate (SP) and Oleate (OA)]. After induction, the cells were treated with Withaferin A in dose-dependent manner (1, 2.5, and 5 µM, respectively). In vitro steatosis was confirmed by Oil-Red-O staining. Molecular Docking: Studies were conducted using Auto Dock Vina software to check the binding affinity of Withaferin-A to LXR-α and FXR. Results: We explored the dual receptor-activating nature of Withaferin A using docking studies, which potently improves high-fat diet-induced NAFLD in mice and suppresses diet-induced hepatic inflammation and liver fibrosis via LXR/FXR. Our in vitro studies also indicated that Withaferin A inhibits lipid droplet accumulation in sodium palmitate and oleate-treated HepG2 and Huh7 cells, which may occur through LXR-α and FXR-mediated signaling pathways. Withaferin A is a known inhibitor of NF-κB-mediated inflammation. Intriguingly, both LXR-α and FXR activation inhibits inflammation and fibrosis by negatively regulating NF-κB. Additionally, Withaferin A treatment significantly inhibited TGF-ß-induced gene expression, which contributes to reduced hepatic fibrosis. Discussion: Thus, the LXR/ FXR dual receptor activator Withaferin A improves both NAFLD-associated liver inflammation and fibrosis in mouse models and under in vitro conditions, which makes Withaferin A a possibly potent pharmacological and therapeutic agent for the treatment of diet-induced NAFLD.

8.
Genes (Basel) ; 13(12)2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36553522

RESUMEN

Hepatocellular carcinoma (HCC) is a complex disease involving altered interactomes of transcripts and proteins. MicroRNAs (miRNAs) are small-noncoding RNAs that can interact with specific gene transcripts and an array of other vital endogenous non-coding RNAs (lncRNAs) that can influence gene expression. Maternally Expressed Gene 3 (MEG3) is an imprinted lncRNA that is reported to be downregulated in HCC (in both cell lines and tumors). Alcohol Dehydrogenase 4 (ADH4) is a well-known prognostic protein biomarker for predicting the survival outcomes of patients with hepatocellular carcinoma whose expression is regulated by miR-664a-3p, which is upregulated in HCC. In this study, we performed a battery of robust and systematic in silico analyses to predicate the possible lncRNA-miRNA interactions between MEG3, miR-664a-3p, and ADH4. miRNA-mRNA and lncRNA-miRNA hybrid structures were primarily obtained, and the minimum free energies (MFEs) for the 3'UTR (Untranslated Regions) of ADH4-miR-664a-3p and the 3'UTR of MEG3-miR-664a-3p interactions were assessed to predict the stability of the obtained RNA heteroduplex hybrids. The hybrid with the least minimum free energy (MFE) was considered to be the most favorable. The MFEs were around -28.1 kcal/mol and -31.3 kCal/mol for the ADH4-miR-664a-3p and MEG3-miR-66a-3p RNA hybrids, respectively. This demonstrated that lncRNA-MEG3 might be a competitive endogenous RNA that acts as a molecular sponge for miR-664a-3p. In summary, our interaction analyses results predict the significance of the MEG3/miR-664a-3p/ADH4 axis, where MEG3 downregulation results in miR-664a-3p overexpression and the subsequential underexpression of ADH4 in HCC, as a novel axis of interest that demands further validation.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , ARN Largo no Codificante , Humanos , Regiones no Traducidas 3' , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , MicroARNs/metabolismo , Proteínas/genética , ARN Largo no Codificante/metabolismo
10.
Front Oncol ; 12: 836004, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35480118

RESUMEN

Cancers are known to have multifactorial etiology. Certain bacteria and viruses are proven carcinogens. Lately, there has been in-depth research investigating carcinogenic capabilities of some bacteria. Reports indicate that chronic inflammation and harmful bacterial metabolites to be strong promoters of neoplasticity. Helicobacter pylori-induced gastric adenocarcinoma is the best illustration of the chronic inflammation paradigm of oncogenesis. Chronic inflammation, which produces excessive reactive oxygen species (ROS) is hypothesized to cause cancerous cell proliferation. Other possible bacteria-dependent mechanisms and virulence factors have also been suspected of playing a vital role in the bacteria-induced-cancer(s). Numerous attempts have been made to explore and establish the possible relationship between the two. With the growing concerns on anti-microbial resistance and over-dependence of mankind on antibiotics to treat bacterial infections, it must be deemed critical to understand and identify carcinogenic bacteria, to establish their role in causing cancer.

11.
Front Oncol ; 12: 1098838, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36605431
13.
Biomed J ; 44(3): 245-251, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34130944

RESUMEN

COVID-19 is a recent pandemic that is still a major health problem of modern times and already more than 17.5 lakhs people succumbed to this deadly disease. This disease is caused by novel coronavirus which is named SARS-COV-2 by the International Committee on Taxonomy of Viruses. This virus originated from Wuhan city in Hubei province of China in December 2019 and within a short period spread across the many countries in the globe. There are a lot of basic as well as clinical research is going on to study the mode of transmission and the mechanism of action of SARS-COV-2 infection and its therapeutics. SARS-COV-2 is not only known to infect lungs, but it also infects other organs in the human body including the gastrointestinal (GI) tract, the liver, and the pancreas via the angiotensin-converting enzyme (ACE) 2, an important component of the renin-angiotensin system. In this short review, we are mainly discussing the mode of SARS-COV-2 transmission, physiological counterbalancing roles of ACE2 and ACE and the tissue patterns of ACE2 expression, and the overall effect of COVID19 on human gastrointestinal System. Therefore, this review sheds light on the possible mechanism of SARS-COV-2 infection in the GI system and its pathological symptoms raising a potential possibility of GI tract acting as a secondary site for SARS-CoV-2 tropism and infection. Finally, future studies to understand the fecal-oral transmission of the virus and the correlation of viral load and severity of GI symptoms are proposed to gain knowledge of the GI symptoms in COVID-19 to aid in early diagnosis and prognosis.


Asunto(s)
COVID-19 , Tracto Gastrointestinal/virología , Enzima Convertidora de Angiotensina 2 , Humanos , Pandemias , SARS-CoV-2 , Tropismo Viral
15.
J Cell Physiol ; 236(5): 3383-3395, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33145763

RESUMEN

Apoptosis antagonizing transcription factor (AATF), an interacting partner of RNA polymerase II is a multifunctional protein that is highly conserved in eukaryotes. In addition to the regulation of gene expression as a transcriptional coactivator, AATF is shown to play a dual role in regulating the cell cycle by displacing histone deacetylases 1 (HDAC1) from the retinoblastoma-E2F transcription factor (Rb-E2F) complex and also from the specificity protein 1 (Sp1) transcription factor responsible for p21 expression, thereby ensuring cell proliferation and growth arrest, respectively, at different checkpoints of the cell cycle. Notably, AATF has emerged as one of the most important modulators of various cellular responses such as proliferation, apoptosis, and survival. Studies have demonstrated that AATF protects cells from multiple stress stimuli such as DNA damage, ER stress, hypoxia, or glucose deprivation by inducing cell cycle arrest, autophagy, or apoptosis inhibition. Furthermore, AATF serves as a critical regulator in various cancers and promotes tumorigenesis by protecting cancer cells from apoptosis induction, favoring cell proliferation, or promoting cell survival by autophagy. Recent studies have demonstrated the key role of AATF in ribosome biosynthesis and have also provided insights into the mechanistic role of AATF, offering impressive cytoprotection in myocardial infarction, neurologic diseases, and nephronophthisis. In this review, we will provide a comprehensive overview of the role of AATF and shed light on its emerging roles underlining the potential use of AATF as a novel biomarker and as an effective therapeutic target.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Puntos de Control del Ciclo Celular/fisiología , Proliferación Celular/fisiología , Factores de Transcripción/metabolismo , Animales , Humanos , Proteínas Represoras/genética , Transducción de Señal/fisiología
16.
Hepatology ; 73(4): 1290-1306, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33131062

RESUMEN

BACKGROUND AND AIMS: The mechanisms by which the I148M mutant variant of the patatin-like phospholipase domain-containing 3 (PNPLA3I148M ) drives development of nonalcoholic steatohepatitis (NASH) are not known. The aim of this study was to obtain insights on mechanisms underlying PNPLA3I148M -induced acceleration of NASH. APPROACH AND RESULTS: Hepatocyte-specific overexpression of empty vector (luciferase), human wild-type PNPLA3, or PNPLA3I148M was achieved using adeno-associated virus 8 in a diet-induced mouse model of nonalcoholic fatty liver disease followed by chow diet or high-fat Western diet with ad libitum administration of sugar in drinking water (WDSW) for 8 weeks. Under WDSW, PNPLA3I148M overexpression accelerated steatohepatitis with increased steatosis, inflammation ballooning, and fibrosis (P < 0.001 versus other groups for all). Silencing PNPLA3I148M after its initial overexpression abrogated these findings. PNPLA3I148M caused 22:6n3 docosahexanoic acid depletion and increased ceramides under WDSW in addition to increasing triglycerides and diglycerides, especially enriched with unsaturated fatty acids. It also increased oxidative stress and endoplasmic reticulum stress. Increased total ceramides was associated with signature of transducer and activator of transcription 3 (STAT3) activation with downstream activation of multiple immune-inflammatory pathways at a transcriptomic level by network analyses. Silencing PNPLA3I148M reversed STAT3 activation. Conditioned media from HepG2 cells overexpressing PNPLA3I148M increased procollagen mRNA expression in LX2 cells; this was abrogated by hepatocyte STAT3 inhibition. CONCLUSIONS: Under WDSW, PNPLA3I148M overexpression promotes steatosis and NASH by metabolic reprogramming characterized by increased triglycerides and diglycerides, n3 polyunsaturated fatty acid depletion, and increased ceramides with resultant STAT3 phosphorylation and downstream inflammatory pathway activation driving increased stellate cell fibrogenic activity.


Asunto(s)
Lipasa , Cirrosis Hepática , Proteínas de la Membrana , Enfermedad del Hígado Graso no Alcohólico , Animales , Dieta Alta en Grasa/efectos adversos , Dieta Occidental/efectos adversos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Expresión Génica , Células Hep G2 , Células Estrelladas Hepáticas/metabolismo , Hepatocitos/metabolismo , Humanos , Lipasa/genética , Cirrosis Hepática/etiología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/fisiopatología , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Mutación , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/fisiopatología , Polimorfismo Genético , Transcriptoma
17.
Sci Rep ; 10(1): 9330, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32518275

RESUMEN

Insulin resistance and hepatic lipid accumulation constitute the metabolic underpinning of nonalcoholic steatohepatitis (NASH). We tested the hypothesis that saroglitazar, a PPAR α/γ agonist would improve NASH in the diet-induced animal model of NAFLD. Mice received chow diet and normal water (CDNW) or high fat western diet and ad lib sugar water (WDSW). After 12 weeks, WDSW fed mice were randomized to receive (1) WDSW alone, (2) WDSW + vehicle, (3) WDSW + pioglitazone or (4) WDSW + saroglitazar for an additional 12 weeks. Compared to mice on WDSW and vehicle controls, mice receiving WDSW + saroglitazar had lower weight, lower HOMA-IR, triglycerides, total cholesterol, and ALT. Saroglitazar improved steatosis, lobular inflammation, hepatocellular ballooning and fibrosis stage. NASH resolved in all mice receiving saroglitazar. These effects were at par with or superior to pioglitazone. Molecular analyses confirmed target engagement and reduced oxidative stress, unfolded protein response and fibrogenic signaling. Transcriptomic analysis further confirmed increased PPAR-target expression and an anti-inflammatory effect with saroglitazar. Lipidomic analyses demonstrated that saroglitazar also reduced triglycerides, diglycerides, sphingomyelins and ceramides. These preclinical data provide a strong rationale for developing saroglitazar for the treatment of NASH in humans.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , PPAR alfa/agonistas , PPAR gamma/agonistas , Fenilpropionatos/farmacología , Pirroles/farmacología , Animales , Modelos Animales de Enfermedad , Dislipidemias/complicaciones , Estrés del Retículo Endoplásmico/efectos de los fármacos , Perfilación de la Expresión Génica , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/complicaciones , Metabolómica , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Fenilpropionatos/uso terapéutico , Pirroles/uso terapéutico , Transducción de Señal/efectos de los fármacos
19.
Genes Dis ; 7(2): 163-165, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32215285

RESUMEN

Fructose, an essential biomolecule and it is a major ingredient of the modern diet across the globe. Excess consumption of fructose may be a key driver of many serious diseases such as obesity, heart diseases, type 2 diabetes and cancer. Understanding the metabolism of fructose, molecular mechanisms of its toxic nature will aid in the treatment of various diseases including cancer.

20.
Genes Dis ; 7(2): 199-204, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32215289

RESUMEN

RNA-induced silencing complex (RISC) is one of the basic eukaryotic cellular machinery which plays a pivotal role in post-transcriptional gene regulation. Discovery of miRNAs and their role in gene regulation have changed the course of modern biology. The method of gene silencing using small interfering RNAs and miRNAs has become major tool in molecular biology and genetic engineering. Hepatocellular Carcinoma (HCC) is a very common malignancy of liver in developing countries and due to various risk factors; the prevalence of this disease is rapidly increasing throughout the globe. There exists an imbalance in interplay between oncogenes and tumor suppressor genes and their regulation plays a major role in HCC growth, development and metastasis. The regulatory function of RISC and miRNAs make them a very important mediators of cancer signaling in HCC. Therefore, targeting the RISC complex for HCC therapy is the need of the time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...